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Abstract
We investigate the quantum entanglement of the ground state and the mixed
states at finite temperatures for a two-qubit system within the framework of an
anisotropic Heisenberg XYZ model in the presence of a nonuniform magnetic
field. As a measure of the entanglement, the concurrence of the two-qubit states
is calculated and is analysed in detail as a function of the coupling constants,
magnetic field and temperature. Consequently, we show that the combined
influence of the anisotropic interaction and the nonuniformity of the magnetic
fields predicts much pronounced entanglement properties.

PACS numbers: 03.67.Mn, 03.65.Ud, 75.10.Jm

1. Introduction

Quantum entanglement is a nonlocal correlation in quantum systems in which the quantum
states of two or more objects have to be described with reference to each other, even though the
individual objects may be spatially well separated [1]. This strongly correlated phenomenon
of the entangled pairs plays a fundamental role in various fields of quantum computation [2]
and quantum information such as quantum cryptography [3] and quantum teleportation [4].
These emerging fields stimulate the investigation on quantifying the quantum entanglement
and controlling it intensively. Many methods of generating the entanglement have been
proposed between the electron spins [5, 6], spin states of quantum dots [7–11], nuclear
spins [12], excitons [13], cooper pairs [14] etc. It is therefore of importance to study the
entanglement properties of pairs of such qubits. Recently, much attention has been devoted to
the interacting Heisenberg spin chain, which is very helpful in gate operations of solid-state
quantum computation processors [7, 8, 15].

In spin systems the magnetic field is a useful mean to control the entanglement. The
entanglement of the isotropic Heisenberg spin chains has been investigated extensively both
in the absence and in the presence of the magnetic field [16–18]. Typically, however, the
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solid-state heterostructures, which realize qubits, are inhomogeneous and also magnetic
imperfections or impurities are likely to be present, giving rise to stray magnetic fields.
Further, constructing the identical qubits is still a difficult task, especially in semiconductor
technology [19]. Therefore, it is important to study the entanglement of the qubits in the
nonuniform magnetic fields. The thermal entanglement of the two-qubit system has been
studied in nonuniform magnetic fields, showing that the nonuniformity in the fields affects the
entanglement significantly, however, in that the interaction between two qubits was assumed
to be isotropic [20].

The isotropic interaction of the spin chain is only an approximation and such an isotropy
is usually broken in real systems because, for instance, the spin–orbit coupling may introduce
perturbations, among other mechanisms. Accordingly, the investigation of the entanglement
when an anisotropic interaction is present constitutes a very interesting and important subject.
Previously, an anisotropic XY Heisenberg spin chain has been investigated in the absence of
magnetic field [18] and also in the presence of uniform magnetic field [21, 22], where it
was shown that the entanglement can be manipulated by adjusting the strength of the applied
field. The thermal entanglement in the completely anisotropic Heisenberg XYZ chain has
been investigated and the zero temperature limit was given in [23], however assuming the
uniform applied field. It was reported numerically that the entanglement of this model is a
monotonously decreasing function of the temperature, when the magnetic fields are absent,
for all sets of the coupling constants [24]. In addition, another kind of anisotropic exchange
interaction, the Dzyaloshinski–Moriya interaction which arises from the spin–orbit coupling,
was considered within the Heisenberg model in studying the thermal entanglement [25]. Most
recently, a two-qubit Heisenberg XXZ model was treated under an inhomogeneous magnetic
field [26], where it was found that the ground-state entanglement is independent of the coupling
constant along the field direction.

In this paper, we investigate the effect of both the nonuniform magnetic fields and the
anisotropy of the coupling between two qubits on the entanglement properties. We employ
the completely anisotropic Heisenberg XYZ spin model to represent the coupled two-qubit
systems effectively. Consequently, we have managed to obtain the analytical expression
of the concurrence of the system in thermal equilibrium as a function of the coupling
constants between the spins, both the homogeneous and inhomogeneous magnetic fields and
the temperature. The concurrence is a widely accepted concept of characterizing the degree of
the entanglement, which ranges between zero and unity indicating the completely disentangled
states and the fully entangled states, respectively. We shall illustrate the various scenarios of
how one may manipulate the concurrence from the disentangled value to the fully entangled
situation by changing the control parameters. In particular, we focus on the combined influence
of the nonuniform fields and the anisotropic interaction on the entanglement, which has not
been investigated thoroughly in the literature, thus distinguishing our contribution from other
works.

This paper is organized as follows. In section 2 we describe the model spin system
considered and obtain its ground states to calculate the concurrences. In section 3 the
entanglement properties of the mixed states in thermal equilibrium are presented and analysed
in detail, including discussions about the limiting situation to the previous reports. Finally,
section 4 contains the concluding remarks.

2. Anisotropic model and the ground state

We use the anisotropic Heisenberg XYZ model, representing a two-qubit system effectively,
to study the entanglement properties in nonuniform magnetic fields. To this end, we write the
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Hamiltonian in the desired form

H = �1σ1 ⊗ σ1 + �2σ2 ⊗ σ2 + �3σ3 ⊗ σ3 + (B + b)σ3 ⊗ I + (B − b)I ⊗ σ3, (1)

where σj are the Pauli matrices and �j are the interaction coefficients which take care of both
the ferro- or anti-ferromagnetic coupling between two spin degrees of freedoms, respectively,
where j = 1, 2, 3, and, B and b describe the magnetic fields, applied along the z-direction, so
that b measures the degree of the inhomogeneity of the applied field at the two spin sites for a
given uniform B field. Also, I denotes the identity matrix.

When the temperature is extremely low, the qubit system may be treated as being in
the ground state. Here, we first give an account of the ground state properties. Note
that both the total spin and its third component are not conserved in our model which
contains the nonuniform applied fields and the anisotropic couplings. Consequently, the
spin-triplet and -singlet states are not the eigenstates of the system considered. In order
to find out the appropriate eigenstates we work in the standard basis for two spins,
{| + +〉, | + −〉, | − +〉, | − −〉}. After performing a straightforward calculation, we obtain the
energy eigenstates of the Hamiltonian, equation (1), as

|φ1〉 = γ+|+ +〉 + η+|− −〉, |φ2〉 = γ−|+ +〉 + η−|− −〉,
(2)

|φ3〉 = µ+|+ −〉 + ν+|− +〉, |φ4〉 = µ−|+ −〉 + ν−|− +〉,
where the coefficients are defined as

γ± ≡ ± 1√
2

2B ± P√
P 2 ± 2BP

, η± ≡ ± 1√
2

�1 − �2√
P 2 ± 2BP

µ± ≡ ± 1√
2

Q ± 2b√
Q2 ± 2bQ

, ν± ≡ 1√
2

�1 + �2√
Q2 ± 2bQ

.

The corresponding energy eigenvalues to these states are given, respectively, as

E1 = �3 + P, E2 = �3 − P, E3 = Q − �3, E4 = −Q − �3, (3)

where definition has been made of

P ≡
√

4B2 + (�1 − �2)2, Q ≡
√

4b2 + (�1 + �2)2.

We confirm that equations (2) and (3) reduce to the results reported in [20] when the coupling
constants are taken isotropic �1 = �2 = �3. Throughout this paper, we shall work in units
so that B,�1,�2 and �3 are dimensionless for convenience.

The degree of the entanglement of a quantum state may be specified by the value of what
is called the concurrence. We adopt the definition for the concurrence which appears in [27].
In this scheme, one introduces a certain matrix,

R = ρ(σ2 ⊗ σ2)ρ
∗(σ2 ⊗ σ2), (4)

and evaluates the eigenvalues of it, where ρ is the density matrix taken in the aforementioned
basis and ∗ indicates the complex conjugate. Then, the concurrence C is defined as

C = max{λ1 − λ2 − λ3 − λ4, 0}, (5)

where λ1, λ2, λ3, λ4 are the positive square roots of the eigenvalues of R in the descending
order. For the pure state, |φ〉 = p|+ +〉 + q|+ −〉 + r|− +〉 + s|− −〉, the density operator is
given by ρ = |φ〉〈φ|, and after inserting it into equation (4) one can evaluate the eigenvalues
of the matrix R which determine the concurrence, equation (5), to be

C = 2|ps − qr|. (6)
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Figure 1. Concurrence of the energy eigenstate |φ2〉 as a function of the uniform field B and the
coupling constant �1 where it is assumed that �2 = 1.

The ground state of the system considered is settled by the competition among the various
parameters appearing in the Hamiltonian. We find that, when P > 2�3 + Q, the ground state
is |φ2〉 and the corresponding energy is E2. The concurrence of this state is obtained using
formula (6) and the result is

C (φ2) = 1

P
|�1 − �2|. (7)

Note that C(φ2) does not depend on the coupling constant �3 and the inhomogeneity
parameter b. The lowest energy state is switched from |φ2〉 to |φ4〉, when we consider the
parameters in the opposite range P < 2�3 + Q. In this case, the concurrence of the ground
state is obtained as

C (φ4) = 1

Q
|�1 + �2| (8)

which depends on b instead of B.
In figure 1, we depict the concurrence of the energy eigenstate |φ2〉 which becomes the

ground state of the system when the associated parameters obey the inequality P > 2�3 + Q.
One can see that the concurrence varies between 0 and 1 as the control parameters are
changed. One observes the monotonous decrease of the concurrence with the magnitude of
B for the fixed �1 and �2. Also, the sharp drop of the concurrence to zero is seen as a
function of �1 at �1 = �2(=1), which is clear from equation (7) for B( �=0). When B = 0,
equation (7) shows that C(φ2) = 1 identically for �1 �= �2. The particular point where
B = 0 and �1 = �2 is special in the sense that the concurrence cannot be determined from
equation (7). This is because equation (7) is indeterminate when both B and �1 − �2 vanish
simultaneously. We have made an independent calculation for a XXZ Heisenberg model with
B = 0 and found that the corresponding state to the special point is

|φ2〉 = |− −〉,
which is disentangled, giving rise to the concurrence of zero.

When the constraint P = 2�3 + Q is satisfied, the states |φ2〉 and |φ4〉 turn out to be
degenerated at the same energy E2 = E4, and, the ground state is represented as the linear
combination of the two states,

|φG〉 = 1√
2
(eiα|φ2〉 + |φ4〉),

where α is the relative phase (note that the two states are equally likely to be, according to
the principle of the maximum entropy in microcanonical ensemble). When this happens there
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(c)

(a) (b)

(d )

Figure 2. Concurrences of the ground states: (a) 3D plot as a function of �1 and B for chosen
�2 = −1, �3 = 1 and b = 2; (b) Contour plot of (a); (c) C versus �1 seen along the vertical lines
in (b) at B = 0, 2.9, 3.35 and 5; (d) C versus B seen along the horizontal line in (b) at �1 = 1.5
(solid curve) and at two additional values of b.

exists a critical field that divides the ground states of the system between |φ2〉 and |φ4〉 for a
given set of the nonuniformity b and the coupling constants, which is determined to be

Bc = (
�2

3 + �3

√
4b2 + (�1 + �2)2 + b2 + �1�2

)1/2
, (9)

and, the concurrence of the state |φG〉 is given as

C(φG) = 1

2

|P(�1 + �2) − ei2αQ(�1 − �2)|
PQ

. (10)

(One may consider a critical coupling constant for a given B and other parameters fixed. See
figure 2(c).)

In figure 2 we manifest the concurrences of the ground states, which is obtained by first
judging carefully which state is the ground state for a given set of parameters, �1,�2,�3, B

and b, and then by using the right formula for the concurrence. In figure 2(a) we present a 3D
plot in the different regimes of the coupling constants, where we vary �1 and B continuously
for fixed �2 and �3, and for a chosen nonuniformity b (one may vary �2 and/or �3 instead of
�1). The corresponding contour plot to figure 2(a) is plotted in figure 2(b) where, for instance,
the effect of the external field can be seen along the B-axis for a chosen �1 and vice versa
(note that C(−B) = C(B)). From figures 2(a) or (b) one notes that there are discontinuous
changes in the concurrences at certain B and also �1.
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In order to understand the discontinuous behaviour precisely we depict in figure 2(c)
the concurrence versus �1 by taking four vertical cuts along B = 0, 2.9, 3.35 and 5 in
figure 2(b). Our detailed analysis shows that when B = 0 (dotted), the ground state remains in
|φ4〉, manifesting a monotonous decrease down to zero at �1 = 1 and then a bouncing back.
When B = 2.9 (dashed-dotted), the ground state is |φ4〉 until �1 < 0.61 (overlapping with
the dotted curve), then it changes abruptly to |φ2〉. Consequently, a discontinuous jump of the
concurrence from C = 0.1 to C = 0.27 occurs at �1 = 0.61. Right at this critical �1 two states
turn out to be degenerated, and, the corresponding concurrence, C(φG) = 0.18, is indicated
as a filled dot, which is calculated from |φG〉 by choosing α = 0 for the illustrative purposes.
When B = 3.35 (dashed), the ground state is |φ4〉 for �1 < −1.5 (overlapping with the dotted
and the dashed-dotted curves) and it undergoes an abrupt change to |φ2〉 for �1 > −1.5. Note
that the concurrence vanishes at �1 = −1 = �2 obeying equation (7). Again, right at the
critical �1 = −1.5, the concurrence is given by the degenerated state |φG〉, whose value is
0.23 marked as a bullet, assuming α = 0. When B = 5, the ground state remains in |φ2〉,
manifested as the solid curve on which a concurrence zero occurs at �1 = −1 = �2 due to
equation (7).

Similarly, in figure 2(d) the concurrence is drawn as a function of B at fixed �1 =
1.5,�2 = −1 and �3 = 1 for three different values of the zero-field splitting parameter,
b = 0, 0.5 and 2. When b = 0 (dotted), the ground state remains in |φ2〉, accordingly
the concurrence obeys equation (7), showing the monotonous decrease with B. On the other
hand, when the nonuniform field is present, we find the critical change of the concurrences
with the magnetic field. When we choose b = 0.5 (dashed), the ground state is |φ4〉 for
B < 0.93 and it becomes |φ2〉 abruptly for B > 0.93. Similar transition in the ground state
occurs, when we use b = 2 (solid), around the critical field Bc = 2.74. Right at the critical
fields, the concurrences are not defined uniquely due to the relative phase α appearing in
equation (10). We have chosen α = 0 for the illustrative purposes, which specifies C(φG) =
0.15 for the b = 2 case. The biggest critical concurrence is C(φG) = 0.27 when α = π/2 for
the same case.

Our work is the generalization of the isotropic two-spin model reported in [20] and of
which results are recovered when we set �1 = �2 = �3 → J in our calculation. The critical
field is specified by B = J + |J |ξ and, when this condition holds, the ground state becomes
degenerated in the isotropic case as well. We obtain that the concurrence of the degenerated
ground state is given by

C(φG) = 1/(2ξ),

where

ξ ≡
√

1 + (b/J )2.

3. Quantum entanglement at finite temperatures

In thermal equilibrium at a temperature T, the density operator of the system is given by
ρ (T ) = e−βH /Z where Z = Tr e−βH is the partition function and β = 1/ (kT ) with k being
the Boltzmann constant. In this case, the state of the system is in a mixture of the ground
state and the excited states; accordingly much interesting features are anticipated from the
mixing of the various entangled states, depending both on the anisotropy of the coupling
and the nonuniformity in the applied field. For the Hamiltonian of the completely anisotropic
Heisenberg XYZ model in the inhomogeneous magnetic field, given in equation (1), the density
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operator has the form

ρ(T ) =




u− 0 0 z

0 v− w 0
0 w v+ 0
z 0 0 u+


 , (11)

where

u± = 1

ZP
e−β�3(P cosh βP ± 2B sinh βP ),

v± = 1

ZQ
eβ�3(Q cosh βQ ± 2b sinh βQ), (12)

z = �2 − �1

ZP
e−β�3 sinh βP, w = −�1 + �2

ZQ
eβ�3 sinh βQ,

with the partition function Z being

Z = 2 e−β�3 cosh βP + 2 eβ�3 cosh βQ, (13)

where P and Q were defined previously. The positive square roots of the four eigenvalues of
the matrix R, which is defined in equation (4) and is dependent on temperature T now, are
determined to be

λ±
I = 1

ZP
e−β�3

(√
4B2 + (�1 − �2)2 cosh2 βP ± (�1 − �2) sinh βP

)
,

λ±
II = 1

ZQ
eβ�3

(√
4b2 + (�1 + �2)2 cosh2 βQ ± (�1 + �2) sinh βQ

)
.

The decreasing order of λ±
I and λ±

II depends on the values of the coupling coefficients �j ,
the parameters B and b of the magnetic field and the temperature T . When the inequality
Q{4B2 + (�1 − �2)

2 cosh2 βP }1/2 + |�1 − �2|Q sinh βP > |�1 + �2| e2β�3P sinh βQ +
e2β�3P {4b2 + (�1 +�2)

2 cosh2 βQ}1/2 holds, we find that the concurrence of the thermal state
equation (11) is given by the following analytical formula:

C = 2

Z
max

(
0,

1

P
|�1 − �2| e−β�3 sinh βP − 1

Q
eβ�3

√
4b2 + (�1 + �2)2 cosh2 βQ

)
.

(14)

On the other hand, when the sign of the inequality is reversed, the concurrence is determined
from the other formula:

C = 2

Z
max

(
0,

1

Q
|�1 + �2| eβ�3 sinh βQ − 1

P
e−β�3

√
4B2 + (�1 − �2)2 cosh2 βP

)
.

(15)

Here, we illustrate the concurrences in various situations. In doing so, one has to first
decide which formula is to be utilized between equations (14) and (15) in evaluating the
concurrence for a given set of parameters. Below, we shall assume that the temperature
is in units of the inverse Boltzmann constant, accordingly kT is dimensionless. All other
parameters are kept dimensionless as before.

In figure 3 we depict the thermal concurrence as a function of both the temperature and
the magnetic field. One can see from the 3D figures, figures 3(a) and (b), that the concurrence
decreases monotonously both with the temperature and the strength of the magnetic field for
the isotropic interaction considered, i.e. �1 = �2 = �3 = 1. There exist a threshold
temperature Tth and a critical field Bc for a chosen set of parameters; beyond them the
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(a) (b)

(c) (d )

Figure 3. Thermal concurrence versus the temperature T and the magnetic field B: 3D plots
(a) b = 0, (b) b = 3; contour plots (c) b = 0, (d) b = 3, where we have used �1 = �2 = �3 = 1.

concurrence gets negligible. This behaviour is seen more clearly in the corresponding contour
plots, figures 3(c) and (d). Also, one notes that the introduction of the nonuniformity in the
magnetic field reduces the high-concurrence region significantly.

In figure 4 we illustrate the effect of a completely anisotropic interaction on the
concurrences, where �1 = 1, �2 = −2 and �3 = 3 were chosen. Figures 4(a) and (c)
are the case where the magnetic field is uniform, b = 0, which are in contrast to figures 4(b)
and (d) where the nonuniformity in the field is introduced, b = 1. In general, the figures
look similar to those in the isotropic interaction. The role of the nonuniformity in the applied
field is again to reduce the high-peak region of the concurrences. However, the details are
quite different. A much rich structure shows up and the concurrence no longer decreases
monotonously with the temperature as well as the magnetic field, which are analysed in the
following figures.

In figure 5 we present the change of the thermal concurrence as a function of temperature.
It is seen, in figure 5(a), that the concurrence decreases down to zero as the temperature
increases for the chosen parameters. Also, one can observe that the threshold temperature
can be manipulated with the variation of the anisotropy in the interaction. For the chosen
coupling constants Tth increases from the left to the right. In figure 5(b) one observes the
interesting feature of the revival phenomena discussed in [23]. We find that for the small
nonuniformity the concurrence decreases to the disentangled values as increasing temperature.
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(a) (b)

(c) (d )

Figure 4. Thermal concurrence versus the temperature T and the magnetic field B: 3D plots
(a) b = 0, (b) b = 1; contour plots (c) b = 0, (d) b = 1, where �1 = 1, �2 = −2 and �3 = 3.

(a) (b)

Figure 5. Change of thermal concurrence with temperature: (a) for the coupling constants
(�1, �2, �3) = (4, 1.6, 0.2), (4, 1.6, 2), (4, 4, 2) and (4, 4, 4) from left to right, while keeping
the magnetic fields constant as B = 2, b = 1.5; (b) for several nonuniform fields, b = 0, 0.9, 1.1
and 1.6 from top to bottom, where the coupling constants are chosen as �1 = 1.5,�2 = −1 and
�3 = 1 and the uniform field is fixed as B = 1.6.

On the other hand, as the nonuniformity in the applied field gets bigger, the concurrence
shows the oscillatory behaviour. For instance, specifically when b = 1.1 in figure 5(b), one



10532 Z-N Hu et al

(a) (b)

Figure 6. Change of thermal concurrence with magnetic fields: (a) for the coupling constants
(�1, �2, �3) = (4, 4, 4), (4, 4, 2), (4, 1.6, 2) and (4, 1.6, 0.2), from top to bottom, while fixing
b = 1.5 and kT = 4; (b) For several nonuniform fields of b = 1.0, 4.0, 5.5 and 7.0, from top
to bottom, where the coupling constants are chosen as (�1, �2, �3) = (4.0,−3.0,−2.0) and the
temperature is fixed as kT = 4.

observes that the concurrence decreases sharply to zero at about kT = 0.19, starting from a
finite value, and, the concurrence revives as increasing the temperature up to the threshold
kTth = 1.63, then it again becomes zero beyond Tth and remains so. What happens is as follows:
when kT < 0.19, the concurrence is given by equation (15) and the value of the second
argument in equation (15) is positive, giving rise to the temperature dependence up to
kT = 0.19. Right at kT = 0.19, both the second arguments in equations (14) and (15)
turn out to be zero identically, accordingly the concurrence becomes zero. When the
temperature is in the range, 0.19 < kT < 1.63, the concurrence is given by the second
argument of equation (14), manifesting the revival of concurrence. Accordingly, the kink
appears at kT = 0.19. Finally, when T > Tth, it is analysed that both the second arguments in
equations (14) and (15) are negative; thus the system remains in the completely disentangled
states after the threshold temperature. Similar explanation applies to the solid curve in
figure 5(b) when b = 1.6.

In figure 6 we depict the change of the concurrence as a function of the applied field
B while the other parameters are fixed. One observes in figure 6(a) that the concurrence
decreases monotonously for (�1,�2,�3) = (4, 4, 4) and (4, 4, 2). On the other hand, when
(�1,�2,�3) = (4, 1.6, 2) and (4, 1.6, 0.2) the revival phenomena appear, which can be
understood similarly to our discussion about figure 5(b). In figure 6(b) it is seen that the
concurrence may decrease monotonously or first increase and then decrease with the magnetic
field, in this case depending on the zero-field splitting parameter b.

We consider here the situation without the applied fields by setting B = b = 0 in the
analytical expressions (14) and (15). Consequently, we get that

C =
{

max{0, C1},
max{0, C2}, (16)

where the first relation holds if 2�3 < |�1 − �2| − |�1 + �2| and the second relation holds
in the opposite domain, and C1 and C2 are given as

C1 = sinh β|�1 − �2| − e2β�3 cosh β(�1 + �2)

cosh β(�1 − �2) + e2β�3 cosh β(�1 + �2)
, (17)

C2 = e2β�3 sinh β|�1 + �2| − cosh β(�1 − �2)

cosh β(�1 − �2) + e2β�3 cosh β(�1 + �2)
. (18)
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It is the thermal concurrence of the two-qubit system with the completely anisotropic
interactions in the absence of the inhomogeneous magnetic field. One can check readily
that our results coincide with equations (9)–(11) in [24] by replacing �1 → Jx/4,�2 → Jy/4
and �3 → Jz/4, where the monotonous decrease of the entanglement with the temperature
was noted numerically. Here we show the change of the concurrence with the temperature
analytically. By taking the derivative of equations (17) and (18) with respect to β, we have
proved that the following inequalities are satisfied for all sets of the coupling constants:

∂C1

∂β
> 0 and

∂C2

∂β
> 0.

Thus, we can conclude that

∂C
∂T

< 0. (19)

Also, we discuss another limiting situation of our analytical results. When we take the
limit T → 0 and also impose the uniformity of the magnetic fields by setting b = 0 in
equations (14) and (15), we obtain that

C =




1,

1
2P

(P − �1 + �2),

1
P

(�1 − �2),

P < �1 + �2 + 2�3

P = �1 + �2 + 2�3

P > �1 + �2 + 2�3,

(20)

where we limit that �1 + �2 > 0 and �1 − �2 > 0 in order to compare with other
works. This result can be obtained directly from the ground state consideration studied
in section 2. Equation (20) is exactly what appears in [23] when replacements are
made of B → B/2,�1 → Jx/2, �2 → Jy/2 and �3 → Jz/2. It shows that the
concurrence of the system changes abruptly at a threshold value of the magnetic field,
Bc =

√
�1�2 + �1�3 + �2�3 + �2

3. This critical magnetic field Bc characterizes the quantum
phase transition occurring in this system [21, 23].

Finally, it is worthwhile to mention that the concurrences, equation (20), or more generally
the ground state concurrences presented in section 2, look peculiarly independent of the
coupling constant �3 at a first glance. Similar situation occurs in the Hesenberg XXZ model
studied in [26]. However, precisely speaking, this is not the case because the ground state itself
is determined by the criteria, P < 2�3 + Q or P > 2�3 +Q in the present case, which depends
on �3. When the magnetic fields are turned off all together, there is no preferential direction
in the system. In this case, the concurrences should be independent of any coupling constants
�i(i = 1, 2, 3), which can be confirmed directly from equations (7) and (8). On the other
hand, the �3-dependence is lifted at finite temperatures essentially by the Boltzmann factor,
exp(−β�3), and, the thermal concurrences presented in section 3 manifest this dependence.

4. Summary and conclusion

We have investigated the entanglement properties of the two-qubit system represented
effectively by the Heisenberg XYZ spin model. We have presented the analytical expressions
of the concurrences of the system and their graphical illustrations, taking into account
the combined effect from both the anisotropic interaction between two qubits and the
nonuniformity in the applied fields.

We have made a through analysis of the ground state and, consequently, have provided the
full analytical expression of the concurrences. We have found that the anisotropic interaction
between two qubits makes all the energy eigenstates entangled. The system undergoes
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the critical change between two entangled states as a function of the magnetic field when
the nonuniformity is introduced in the applied field. The ground state becomes degenerated
at the critical fields, and, the corresponding concurrence to this state takes a definite value
which is not in any way connected continuously to either side of the field domain, intriguingly
however, it is not defined uniquely due to the relative phase.

At finite temperatures we have also managed to obtain the analytical expression of
the Wootters concurrences. We have presented much intriguing features of the thermal
concurrences by varying the experimentally controllable parameters. It becomes clear that
the concurrence can be manipulated between the highly entangled value and the completely
disentangled one in terms of the temperature and the applied field. However, our investigation
shows that the details are dependent upon the combined effects of the anisotropy in the
interaction between two qubits and the nonuniformity of the applied field. These effects
are typically not tractable in real systems, accordingly the transition between an entangled
state and a disentangled state may not occur monotonously, but rather in a nontrivial manner.
We have manifested the revival phenomenon both as a function of the temperature and the
magnetic field.

We have also confirmed that our results recover the existing reports in the limiting
situations such as the zero-field limit at finite temperatures and the zero-temperature limit
in the presence of the uniform magnetic field, when the interaction between two qubits is
anisotropic, also the limit of the isotropic interaction when both the finite temperature and the
nonuniform field are present.
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